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Abstract

To understand the effects of He on irradiated metals requires modeling of helium-vacancy cluster evolution. A new
method of solving the two-dimensional master equation (ME) describing He-vacancy cluster evolution has been applied
to calculate helium bubble evolution in a stainless steel irradiated with alpha particles near room temperature and annealed
in the temperature range of 600–900 �C. For the first time, the evolution of the helium bubble size distribution function was
precisely calculated in 2-D phase space and good agreement with experimental results was obtained. The results indicate
that Brownian motion of bubbles via surface vacancy diffusion provides a reasonable explanation for bubble evolution
during annealing, most bubbles are found to be near the equilibrium state during the evolution at temperatures of
700 �C and higher, lack of vacancies at temperatures lower than 700 �C prevents bubble growth, and use of a non-ideal
He equation of state (EOS) increases the bubble density and size relative to the case when the ideal EOS is used.
� 2006 Elsevier B.V. All rights reserved.

PACS: 61.80.Az; 61.72.Cc; 61.72.Ji; 61.72.Qq
1. Introduction

Precipitation of helium introduced into metals by
(n,a) reactions that occur in fission and fusion reac-
tors influences microstructure evolution of materi-
als. It has been established that helium atoms assist
the nucleation and growth of cavities in irradiated
materials leading to swelling and mechanical prop-
erty changes. Modeling of helium-vacancy cluster
evolution is required to develop an understanding
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of the role of He. The literature contains several par-
tial treatments of the problem where two coarsening
mechanisms, namely Ostwald ripening (OR) [1–13]
and bubble migration and coalescence (BMC)
[14–20,7,21–25] have been considered. However an
accurate treatment of the second mechanism is com-
plicated and the previous work has been done in a
semi-quantitative way. For example, when, calculat-
ing bubble coalescence driven by BMC, it has com-
monly been assumed that bubbles maintain
mechanical equilibrium during their evolution. Such
an approach simplifies the calculations by permitting
the transformation of a 2-D kinetic equation
describing the evolution two independent variables
.
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(numbers of He atoms and vacancies) into a 1-D in
which this number of vacancies is determined by
the number of He atoms in accordance with a certain
EOS. However the validity of the assumption has
not been proven. The present work addresses this
problem.

In the framework of a mean field approach, the
most general description of cluster evolution is
based on the so-called master equation (ME), which
summarizes a large number of differential (or inte-
gral–differential when BMC is taken into account)
equations. In order to be realistic, it is necessary
to consider clusters containing a large number of
point defects/atoms, thus the number of equations
is normally too large to be used in numerical calcu-
lations. However the ME can be solved by means of
numerical methods using procedures, which allow
reducing the number of equations significantly.
The grouping method first developed by Kiritani
[26] for describing the evolution of vacancy loops
during ageing of quenched metals was intended to
provide such a procedure. However, it was shown
in [27] the method is not accurate because the
grouping equations are not faithful to the original
ME. The problem arises due to the main assump-
tion made in [26] that a group of equations can be
replaced with a single ‘averaged’ equation. A similar
problem arises for any grouping method using the
same assumption. Note that the calculation of clus-
ter evolution driven by both coarsening mechanisms
has not been subjected to any specific grouping
method of the type mentioned.

It has been shown [27] that for the case of 1-D
ME when cluster evolution is driven by OR only,
the simplest accurate grouping method may be
obtained when the size distribution function
(SDF) within a group is approximated by a linear
function. Such an approximation maintains the
identity of the grouped ME with the original, while
satisfying the conservation laws for both the total
number of clusters and the total number of point
defects accumulated in the clusters. In [28] the
grouping method was generalized to the case of
2-D ME. Moreover, it appears that the grouping
method can be also generalized to take into account
bubble migration and coalescence [29]. Thus, in the
framework of the generalized grouping method
describing evolution of the clusters equal accuracy
can be obtained for the general case when the evolu-
tion is driven simultaneously by cluster interactions
with mobile point defects, and by Brownian motion
of the clusters.
The present study focuses on application of the
grouping method to model He-vacancy cluster
evolution in a stainless steel irradiated with alpha
particles near room temperature and annealed in
the temperature range of 600–900 �C [30]. The ME
used and a short description of the grouping method
are provided in Section 2. Experimental data on He-
vacancy cluster evolution in a stainless steel [30] and
set of material and irradiation parameters used in
the calculations are given in Section 3. Results of
the calculations are presented in Section 4.

2. Outline of modeling

To describe the evolution of He-vacancy clusters
driven by reactions with mobile point defects and
Brownian motion and coalescence of the clusters,
the following ME has to be solved in a two-dimen-
sional phase space of x, m (x and m are the number
vacancies and He atoms, respectively)

df ðx;mÞ
dt

¼ �ðrxJ xðx;m; tÞ þ rmJ mðx;m; tÞÞ

� f ðx;mÞ
X

x0P1;x0 6¼x
m0P0;m0 6¼m

Kxm;x0m0f ðx0;m0Þ

� 2f 2ðx;mÞKxm;xm þ
X

x06x�2
m06m

Kx0m0;x�x0 ;m�m0

� f ðx0;m0Þf ðx� x0;m� m0Þ; ð1Þ

where the first term describes cluster evolution
driven by cluster interaction with point defects
($x, $m are divergences in x and m space, correspon-
dently) and other terms describe the impact of clus-
ter Brownian motion and coalescence. In Eq. (1)
f (x,m, t) and Jx (x,m, t), Jm (x,m, t) are the size dis-
tribution function (SDF) and fluxes of clusters in x

and m-spaces, respectively; and Kx0m0 ;x00m00 is the colli-
sion cross section between the clusters containing x 0,
m 0 and x00, m00 vacancies and He atoms, respectively.
The fluxes are determined by the reactions of clus-
ters with point defects and may be presented as
follows:

J xðx;m; tÞ ¼ P xðx;m; tÞf ðx;m; tÞ
� Qxðxþ 1;m; tÞf ðxþ 1;m; tÞ;

J mðx;m; tÞ ¼ P mðx;m; tÞf ðx;m; tÞ
� Qmðx;mþ 1; tÞf ðx;mþ 1; tÞ;

ð2Þ

where the coefficients Px(x, t), Qx(x,m, t),Pm(x, t),
and Qm (x,m, t) are the cluster reaction rates for
capture (P) and evaporation (Q) of mobile point
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defects (vacancies, SIAs and He atoms) leading to a
change in the cluster of sizes x and m, respectively;
Kx0m0;x00m00 is the cross-section for randomly migrating
spherical particles. Kx0m0 ;x00m00 was first derived by
Chandrasekhar [31] and may be written in the
following form:

Kx0m0 ;x00m00 ¼ ð48p2=X2Þ1=3½ðx0Þ1=3þðx00Þ1=3�½Dx0m0 þDx00m00 �;
ð3Þ

where X is the atomic volume and Dxm is diffusion
coefficient of xm-cluster.

A ME in the form of Eq. (1) is a set of rate equa-
tions for the density of clusters of different sizes in
the range of practical interest. As mentioned above,
it is necessary to consider clusters containing such a
large number of vacancies and He atoms that the
numerical solution of Eq. (1) becomes practically
impossible. The grouping method developed in
[28,29] permits the number of equations to be
reduced substantially, thus providing a tool which
can be used for numerical calculations. The main
idea of the grouping method [28] is that the xm

phase space is divided into a series of groups with
widths Dxi = xi � xi�1, Dmj = mj � mj�1, which
include the clusters of the sizes xi = xi�1 + k

(k = 1,2, . . . ,Dxi), mj = mj�1 + n (n = 1,2, . . . ,Dmj)
and the SDF is approximated by a linear function
within a group as follows:

fi;jðx;mÞ ¼ Li;j
0 þ Li;j

1xðx� hxiiÞ þ Li;j
1mðm� hmijÞ; ð4Þ

where hxii, hmij are mean cluster sizes within the ij

group. In Eq. (4) the subscript i indicates the num-
ber of a group in x-space and the subscript j

indicates the number of a group in m-space. Thus
within the grouping method one needs to calculate
three coefficients Li;j

0 , Li;j
1x, Li;j

1m for each group instead
of number of equations equal to ni,j = DxiDmj

required by Eq. (1).
It has been shown [28,29] that the simplest accu-

rate form of the equations for the coefficients
Li;j

0 ; L
i;j
1x;L

i;j
1m can be derived assuming that (a) the

reaction rates with mobile defects for all cluster sizes
within a group are equal, (b) rates of cluster coales-
cence for all clusters within a group are equal, and (c)
coalescence of any two clusters belonging to the
same or different groups, e.g. pq and p 0q 0, results in
a cluster of bigger size belonging to a single group,
e.g. ij, which satisfies the following conditions:

xi�1 < ðhxip þ hxip0 Þ 6 xi;

mj�1 < ðhmiq þ hmiq0 Þ 6 mj:
ð5Þ
In this case, equations for the coefficients
Li;j

0 ; L
i;j
1x; L

i;j
1m are given by

dLi;j
0

dt
¼ 1

Dxi
½J xðxi�1;hmijÞ� Jxðxi;hmijÞ�

þ 1

Dmj
½J mðhxii;mj�1Þ� Jmðhxii;mjÞ�

�Li;j
0 ðtÞ Kij;ijL

i;j
0 ðtÞDxiDmjþ

X
p;q

Kij;pqLp;q
0 ðtÞDxpDmq

" #

þ 1

ðDxiDmjÞ
X
p;q

X
p0q0

Kpq;p0q0L
p;q
0 ðtÞL

p0 ;q0

0 ðtÞDxpDmqDxp0Dmq0 ; ð6Þ

dLi;j
1x

dt
¼� Dxi�1

2r2
i Dxi

� ��
Jxðxi�1;hmijÞþJ xðxi;hmijÞ

�2J x hxii�
1

2
;hmij

�� �

þ 1

Dmj

�
½Jmðhxiiþ1;mj�1Þ�J mðhxii;mj�1Þ�

� J mðhxiiþ1;mjÞ�J mðhxii;mjÞ
� ��

þ
X
p;q

X
p0 ;q0

DxpDmqDxp0Dmq0

ðDxiDmjÞr2
i

Kpq;p0q0L
p;q
0 ðtÞL

p0 ;q0

0 ðtÞ

� hxipþhxip0 � hxii
� 	

; ð7Þ
dLi;j

1m

dt
¼� Dmj�1

2r2
j Dmj

 !�
J mðhxii;mj�1ÞþJ mðhxii;mjÞ

�2J m hxii;hmij�
1

2

�� �

þ 1

Dxi
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� ½J xðxi;hmijþ1Þ� Jxðxi;hmijÞ�g

þ
X
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X
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ðDxiDmjÞr2
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0 ðtÞL
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� 	

ð8Þ

where

r2
i ¼

1

Dxi

Xxi

k¼xi�1þ1

k2 � 1

Dxi

Xxi

k¼xi�1þ1

k

 !2
2
4

3
5;

r2
j ¼

1

Dmi

Xmi

k¼mi�1þ1

k2 � 1

Dmi

Xmi

a¼mi�1þ1

k

 !2
2
4

3
5: ð9Þ

Eq. (9) gives dispersions of cluster sizes in the ij

group. Note that summation in the last terms of
Eq. (6)–(8) takes place over the groups pq and p 0q 0

satisfying Eq. (5). Note also that in the case
when the group widths are taken to be equal to
1, i.e. Dxi = Dmj = 1, Eq. (6) is transformed to

Eq. (1) Lij
0 � f ðx;mÞ; hxii � xi; hmij � mj

� 	
whereas

the right hand sides of Eqs. (7) and (8) turn out to

be equal to zero, i.e. Lij
1;x ¼ Lij

1;m ¼ 0. In other words,
there are no boundary problems between small size
clusters, which are normally described by Eq. (1)
(Dxi = Dmj = 1) and the bigger ones when Dxi > 1,
Dmj > 1.
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Eqs. (6)–(8) represent ME within the grouping
method and may be used to describe cluster evolu-
tion during irradiation or ageing. As can be seen
from Eqs. (6)–(8), the basic values which determine
the cluster evolution are the fluxes Jx(x,m, t),
Jm(x,m, t) in the x, m size space and the cross-sec-
tion Kx0x00;m0m00 for cluster coalescence. Here we will
take into account mobility of vacancies, self intersti-
tial atoms (SIAs) and He atoms in an interstitial
configuration. The fluxes and corresponding rate
equations for the mobile defects are given in [28].
The diffusion coefficient for clusters containing
two or more vacancies is taken according to surface
diffusion kinetics (see e.g. [32]).

Dxi ;mj ¼ Dhxii ¼
3

2p
DS

X1=3

hrii

 !4

; ð10Þ

where DS ¼ D0
S expð�ES=kT Þ is the surface diffusion

coefficient, X is atomic volume and hrii = (3Xhxii/
4p)1/3 is the mean radius of the ij group of clusters.
In our calculations it is assumed that the smallest
clusters (x = 1) are immobile and can contain up
to 4 helium atoms. The gas pressure in the clusters,
which determines cluster stability, is computed
using a non-ideal equation of He state derived by
Manzke and Trinkaus [33,34].

The set of Eqs. (6)–(8) together with the equa-
tions for the mobile defects has been numerically
integrated using the so-called Modified Euler
method [35]. The calculations have been performed
for the cases:

1. Helium pre-implantation regime, when He-
vacancy cluster evolution takes place under the
concurrent processes of Frenkel pair production
and He implantation, and

2. Thermal annealing regime, when bubble evolu-
tion takes place via Brownian motion and coales-
cence of bubbles and their reactions with
thermally generated vacancies.
Table 1
Summary of bubble microstructures observed after 40 appm helium im
1 h

Helium
implanted (appm)

T (�C) Density
(1021 m�3)

32 600 –
44 700 8.25
37 750 6.33
47 800 6.66
41 900 2.15
The initial conditions for the mobile defects and
initial and boundary conditions for the SDF for step
1 are taken in the following form:

CvðtÞjt¼0 ¼ Cv0;

Ciðt ¼ 0Þjt¼0 ¼ CHeðtÞjt¼0 ¼ 0;

f ðx;m; tÞjt¼0 ¼ Cv0dðx� 1ÞdðmÞ; ðx P 1Þ;
f ðx ¼ 1; 0; tÞ ¼ CvðtÞ; f ðx ¼ 1;m; tÞ ¼ 0:

ð11Þ

In Eq. (11) d(x) is the Kronneker delta. The initial
and boundary conditions for the second step are
taken from what was calculated during the first step.
3. Experimental data and parameters used in the

calculations

In [30], specimens of model austenitic alloy P7
(Fe–17Cr–16.7Ni–2.5Mo) were implanted with
about 40 appm He at room temperature and subse-
quently annealed for 1 h at temperatures between
600 and 900 �C. The temperature during implanta-
tion was less than 200 �C and the He implantation
level in specimens used for the annealing varied
between 32 and 47 appm. Helium bubble data mea-
sured after 1 h annealing are summarized in Table 1.

As can be seen from Table 1, He bubbles were
found after 1 h annealing at all temperatures except
600 �C. In the temperature range of 700–900 �C the
average size of bubbles increases and density
decreases with increasing annealing temperature.
Deviation from this behaviour observed at 800 �C
(see Table 1) is probably a result of the higher level
of implanted helium in the specimen used for
annealing at 800 �C (see helium content calculated
at the temperatures in Table 1 in [30]).

The calculations in the present work have been
done by numerical integration of Eqs. (6)–(8) and
corresponding rate equations for the mobile defects,
i.e. for vacancies, self-interstitial atoms (SIAs) and
He atoms in interstitial configuration. It is assumed
plantation in solution-annealed P7 and subsequent annealing for

Average
radius (nm)

He content
calculated (appm)

–
0.82 15–17
1.09 25–29
1.57 69–83
1.99 35–44



Table 2
He implantation parameters and material parameters used in the calculations

Helium generation rate 2.0 · 10�3 appm/s
Implantation temperature 100 �C
Displacement rate during implantation 5.0 · 10�7 dpa/s
Implantation time 2.0 · 104 s
Displacement dose 1.0 · 10�2 dpa
Helium implantation level 40 appm
Recombination coefficients 5.0 · 10+20 m�2

Atomic volume, X 1.1777 · 10�29 m�3

Vacancy diffusion coefficient pre-exponentional factor 8.0 · 10�05 m2/s
Migration energy 1.40 eV
SIA diffusion coefficient, pre-exponentional factor 8.0 · 10�08 m2/s
Migration energy 0.15 eV
He atom diffusion coefficient pre-exponentional factor 8.0 · 10�08 m2/s
Migration energy 0.15 eV
Dislocation density 1013 m�2

Surface energy (3.24 � 1.4 · T (�C)/1000) J/m2 [37]
Dislocation capture efficiency for vacancies 1.00
Dislocation capture efficiency for SIAs 1.25
Surface diffusion coefficient, DS pre-exponentional factor 4.65 · 10�9 m2/s
Migration energy 1.40 eV
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that the implantation temperature was equal to
100 �C and all specimens were implanted with He
to a level of 40 appm. The implantation parameters
and material parameters used in our calculations are
summarized in Table 2.
4. Results

4.1. He accumulation during implantation

The calculations are carried out to a dose of
10�2 dpa when the total He concentration reached
a level of 40 appm. It is found vacancy concentra-
tion under irradiation does not reach steady state
level because of their low mobility. Under this con-
dition He atoms are mainly accumulated in clusters
of the smallest size, x = 1, since the total flux of
SIAs to He-V clusters remains larger than that of
vacancies. Thus the terminal SDF after irradiation
is found to be close to a delta function in x-space
whereas in m-space it covers an area from m = 0
to m = 4. This calculated SDF is used as input to
the subsequent calculations of bubble evolution
during the annealing at temperatures in a range of
600–900 �C.
4.2. Bubble evolution during annealing

As mentioned above, the smallest He-vacancy
clusters, i.e. cluster of size x = 1, are considered to
be immobile. Since thermal resolution of He atoms
from the clusters is not taken into account in our
calculations, the onset of bubble evolution takes
place via reactions between freely migrating vacan-
cies and the smallest clusters. Indeed, such reactions
lead to the formation of the clusters of di-vacancy
type, which migrate via the surface diffusion mecha-
nism (see Eq. (10)). As a result, the clusters of bigger
sizes, i.e. clusters with x > 2, may be formed via
interaction between the di-vacancy clusters and the
smallest clusters of x = 1 providing a mechanism
He transport from small clusters to the bigger ones,
i.e. bubble evolution. The activation energy for sur-
face diffusion, ES, and the pre-exponentional factor,
D0

S, were used as fitting parameters in the cal-
culations. It was found that the results obtained
for the case when ES is taken to be equal to the vol-
ume vacancy migration energy and D0

S ¼ 4:65�
10�9 m2=s agrees quite well with the observations.
More detailed characterization of the results calcu-
lated is presented below.
4.2.1. Annealing in the temperature range of

700–900 �C
The calculations have been carried for all anneal-

ing temperatures used in [30]. It was found that the
2-D bubble size distribution functions, f(x,m),
calculated in this temperature range exhibit quite
similar behaviour. Namely, bubbles were found to
be distributed in wide range of x, m-space but are
mainly concentrated along certain trajectories which
correspond to equilibrium bubbles, i.e. those
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bubbles which satisfied the equilibrium equation
2c/r(x) = p(x,m,T), where p(x,m,T) is gas pressure,
r(x) is bubble radius, T is absolute temperature and
c is the surface energy. Moreover, such a SDF is
maintained throughout annealing time. An example
can be seen in Figs. 1(a) and 1(b) where 2-D size
distribution functions calculated at 800 �C for
annealing times of 380 s and 1 h are presented.
The plots show that the SDF was indeed located
along the equilibrium trajectory shown in the plots
by the red solid lines. The same trend in bubble evo-
lution is found to take place at other temperatures
as illustrated in Figs. 2(a) and 2(b) where the termi-
nal SDFs calculated for the case of 1 h annealing at
the temperatures of 700 and 900 �C are presented.
Thus, one can conclude that the assumption that
bubbles are maintained in mechanical equilibrium
during annealing used in earlier models is quite real-
istic. Note that the scale of the density axis in Figs.
1(a), 2(a) and 1(b), 2(b) is different whereas the scale
of x,m-space is the same in all plots.

A comparison of the calculation results with
those measured is given in Figs. 3(a), 3(b) and
4(a), 4(b). In Figs. 3(a), 3(b) integral parameters
such as number density and average size of bubbles
calculated at different temperatures for the case of
implantation of 40 appm He are presented together
with the measured results [30]. The calculated
results agree well with the observations. To illus-
trate sensitivity of the calculated bubble density
and size to the He content, calculated results
obtained for the case of implantations of 20 appm
at 700 �C and 80 appm at 800 �C (see last column
0 500
1000

1500
2000

2500
3000

0

1x1020

2x1020

3x1020

0.5

1.0
1.5

2.0
2.5

B
ub

bl
e

de
ns

ity
(m

-3
,n

m
-1

)

Bub
bl

e r
ad

iu
s (

nm
)

Number of He atoms

800oC, 380 sec.

Fig. 1(a). Bubble size distribution calculated at 800 �C after
annealing for 380 s.

1000

2000

3000 0.5

1.0
1.5

2.0

Bubble R
adius (n

m)Number of He Atoms

Fig. 2(a). Bubble size distribution calculated at 700 �C after
annealing for 1 h.
in Table 1) are also presented in the plots. Varia-
tions in He content change are calculated in such
a way to improve their agreement with the experi-
mental values [30].

Calculated and measured [30] 1-D size distribu-
tion functions ðf ðxÞ ¼

P
mf ðx;mÞÞ for different

temperatures are presented in Figs. 4(a) and 4(b).
The measured and calculated SDFs are very close
to each other at low temperatures 700 and 750 �C,
whereas at higher temperatures the measured distri-
butions are slightly wider than that the calculated
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ones. However the effect is rather small. Thus, one
may conclude that the calculated results agree rea-
sonably well with the observations. Note that ther-
mal resolution of He atoms from bubbles, which is
not taken into account in our calculations, is prob-
ably responsible for the width of the SDFs at higher
temperatures.
Note that the structure observed in the size distri-
bution functions in Figs. 1, 2 and 4 is a result of
including the mechanism of Brownian motion and
coalescence. The size distribution functions nor-
mally have a smooth profile when evolution is con-
trolled by emission and absorption of single defects



Fig. 4(b). Observed bubble size distributions at the same
temperatures.
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which leads to very small relative changes in the
bubble size. For example, such a smooth SDF is
observed when the current approach is used to sim-
ulate Ostwald ripening. In the case of BMC the
change in cluster size due to coalescence is qualita-
tively different – a collision of two bubbles may lead
to formation of a cluster with a size much larger
than that of either bubble. Some support for this
argument may be obtained from Fig. 4(b), where
the experimentally measured SDF is presented.
4.2.2. Annealing at 600 �C

It was found that bubble evolution at this tem-
perature is qualitatively different from that at
700 �C and higher temperatures. The calculations
show that bubble evolution in this case is very lim-
ited and results in formation of bubbles with a mean
size of about 1 nm in diameter during 1 h annealing.
This is close to the size limit of bubbles to be
detected by TEM. Close examination shows that
the decrease in bubble growth is caused not only
by a decrease in their mobility but also because of
the lack of vacancies available to contribute the evo-
lution since the annealing time of 1 h is not enough
to reach the thermal equilibrium vacancy concentra-
tion. As a result, bubbles at this temperature are
over-pressurized with respect to the equilibrium
value of gas pressure caused by surface tension
(2c/r(x)) as can be seen in Fig. 5. Correspondingly

their size increases with time as about hri / t1/8

instead of hri / t1/5, which is expected for the case
when bubbles are considered to be in equilibrium.
One can conclude that the present calculations agree
with the observations [30].

Note that the actual bubble size in this case is
probably even smaller than that calculated if we
take into account that the mobility of over-pressur-
ized bubbles has to be less than that described by
Eq. (10). Indeed, it has been shown (see e.g. [9,22])
that high He pressure in bubbles suppresses vacancy
surface diffusion and consequently bubble mobility.
From Fig. 5 it is clearly seen that the strongest sup-
pression of bubble mobility would take place during
the earlier stages of annealing when the He density
in bubbles is very high. Thus, the onset of bubble
evolution is probably delayed and consequently
their size will be smaller than that found in our
calculations.
4.3. Impact of equation of state

Bubble stability with respect to vacancy emission
is determined by the corresponding binding energy,
which depends on the bubble gas pressure that is
calculated via EOS. Taking the non-ideal EOS in
a form p(x,m) = nkBT*Z(m/x,T), the vacancy bind-
ing energy with a bubble containing x vacancies and
m He atoms may be presented as follows:

Eb
vðx;mÞ ¼ Ef

v �
a

x1=3
þ m

x

� 	
Z

m
x
; T

� 	
kBT ; ð12Þ

where n = m/xX is the bubble gas density, kB and T

are the Boltzmann constant and absolute tempera-
ture, respectively, Z(m/x,T) P 1 is the so-called
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compressibility factor, Ef
v is the vacancy formation

energy, and a = 2c(4pX2/3)1/3. As can be seen from
Eq. (12) Eb

vðx;mÞ decreases the compressibility fac-
tor decreases. In the case when the ideal EOS is ap-
plied the compressibility factor reaches a minimum
value, Z(m/x,T) = 1, and consequently Eb

vðx;mÞ
also reaches a minimum value. Because the ideal
EOS has a very simple form it has been often used
in the past to describe bubble evolution in both ana-
lytically and numerically models. For example, the
simplest description of He bubble evolution may
be obtained assuming that during annealing (a) all
bubbles are in mechanical equilibrium and (b) all
bubbles are characterized by a mean radius (delta
function approach). In this case, the density and
mean radius of bubbles are given by (see e.g. [38])

r ¼ 1:48 � MkBT X4=3

2c

 !1=5

ðDStÞ1=5
;

N ¼ 0:256 � 3MkBT

8pcX8=9

� �3=5

ðDStÞ�2=5
;

ð13Þ

where M is the total number of He atoms in a unit
volume. Eq. (13) have been often used for compar-
isons with experimental observations (see e.g. [36]),
although the validity of the model has never been
verified. Such verification can be easily done by
repeating the calculations while employing the ideal
EOS. Comparison of the calculated results obtained
with the ideal EOS with those obtained with the
non-ideal EOS and given by Eq. (13) reveal the im-
pact of EOS on the predicted bubble evolution and
also verify the validity of Eq. (13). Note that Eq.
(13) are slightly different than those given in [38]
due to the reduction of the rate in Eq. (13.252) in
[38] by a factor of 2 since removal of two bubbles
in a coalescence event forms another bubble firstly
noted in [39].

Such a comparison is presented in Figs. 6 where
the density and mean size of bubbles are plotted
as a function of the annealing time calculated in
three different ways at 800 �C. The solid and short
dashed curves on the plots represent the calculated
results obtained by numerical integration of Eqs.
(6)–(8) with non-ideal and ideal EOS, respectively,
whereas the long dashed lines are calculated using
Eq. (13). As can be seen from Fig. 6(a), the bubble
density calculated with the non-ideal EOS is always
higher than that calculated with the ideal EOS
except for the initial stage. Moreover, the difference
increases with time because in the case of the ideal
EOS the density decreases more rapid with time.
However, at large enough time (>103 s), when the
bubble density calculated for the ideal EOS reaches
a value close to that given by Eq. (13), the time
dependence is changed to nearly of �t�2/5, i.e. very
close to that given by Eq. (13). Surprisingly, in the
non-ideal ES case, the time dependence follows a
law which is also very close �t�2/5 after about 10
annealing seconds even though the bubble density
is higher than that given by Eq. (13).

As can be seen from Fig. 6(b), the mean size cal-
culated in the case of the non-ideal ES is also higher
than that calculated in the case of the ideal ES.
However the difference is not as large as in the case
of the bubble density. Similar to that found for the
density the time dependence of the mean size in the
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case of non-ideal ES is also close to that for the ideal
ES at large enough annealing times. Moreover the
time dependence is close to that given by Eq. (13).
Thus, although the total volume of bubbles calcu-
lated in the case of the non-ideal ES is found to
be essentially larger than that calculated in the case
of the ideal ES, the time dependences of both den-
sity and mean size of bubbles in both cases follow
approximately the same law at large enough anneal-
ing times. Moreover, this time dependence is very
close to that given by Eq. (13). Thus, one may con-
clude that the main effect caused by the non-ideal
ES relative to the ideal ES is an increase in the abso-
lute values of the density and size of bubbles
whereas their evolution in time is very similar in
both cases.

The validity of Eqs. (13) can be verified by com-
parison of the short dashed curves and long dashed
curves in Figs. 6. It can be seen that at the interme-
diate annealing times Eq. (13) underestimates the
density and overestimates the mean size of bubbles
compared to that obtained by the numerical inte-
gration. However the effects decrease with increas-
ing annealing time and finally the difference
between the numerical results and those described
by (13) becomes very small. Thus, one may con-
clude that bubble evolution described by Eq. (13)
is quite reasonable at high enough annealing times.
Note that this conclusion is valid in the case when
the mean bubble size is large enough to apply the
ideal ES.

5. Conclusions

A new grouping method developed to obtain an
approximate solution of two-dimensional ME
describing the evolution of point defect clusters pro-
posed in [28,29] has been applied to calculate He
bubble evolution in a stainless steel irradiated with
alpha particles near room temperature and annealed
in the temperature range of 600–900 �C. For the
first time the bubble evolution during annealing dri-
ven by Brownian motion and coalescence has been
calculated without the assumption that bubbles
remain in mechanical equilibrium during the pro-
cess. The calculated results shown:

1. Brownian motion and coalescence of bubbles
provide a reasonable mechanism for explaining
bubble evolution during annealing in the whole
temperature range. The surface diffusion coeffi-
cient obtained from the calculations agrees well
with that reported for a similar stainless steel at
similar temperatures [36].

2. Average size and number density of bubbles after
annealing for 1 h calculated in the temperature
range of 700–900 �C agree well with those mea-
sured in [30]. It is found that the 2-D bubble size
distribution calculated in this temperature range
covers a quite narrow area in the x, m-phase space
located along the equilibrium trajectory (p =
2c/r). One may conclude that the assumption that
bubbles remain in mechanical equilibrium during
annealing used in the earlier models is quite real-
istic at high enough temperatures.

3. Bubble coarsening occurs also at 600 �C but the
average bubble size remains too small during
the annealing to be detected by TEM agrees well
with the observations. Slow bubble growth in this
case is related not only to a decrease in cluster
mobility but also due to a lack of freely migrating
vacancies since the annealing time of 1 h is not
enough to build up the thermal equilibrium
vacancy concentration. As a result, bubbles
remain over-pressurized during the annealing.
Because of this pressurization, the mobility of
bubbles at this temperature is probably overesti-
mated in our calculations, i.e. the bubble size has
to be even smaller, since high gas pressure should
suppress surface diffusion and consequently bub-
ble coalescence.

4. Bubble evolution is quite sensitive to the He
equation of state used for the calculations in
the bubble size range of several nanometers.
When a non-ideal EOS is used to calculate
bubble evolution, both the density and size of
bubbles are larger than that calculated with the
ideal gas EOS. It is found also that a simple
model for bubble evolution based on a mean size
approach of type given by Eq. (13) may give a
quite realistic description of the process at long
enough annealing times and high temperatures.
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